We propose a sampling theory for signals that are supported on eitherdirected or undirected graphs. The theory follows the same paradigm asclassical sampling theory. We show that perfect recovery is possible for graphsignals bandlimited under the graph Fourier transform. The sampled signalcoefficients form a new graph signal, whose corresponding graph structurepreserves the first-order difference of the original graph signal. For generalgraphs, an optimal sampling operator based on experimentally designed samplingis proposed to guarantee perfect recovery and robustness to noise; for graphswhose graph Fourier transforms are frames with maximal robustness to erasuresas well as for Erd\H{o}s-R\'enyi graphs, random sampling leads to perfectrecovery with high probability. We further establish the connection to thesampling theory of finite discrete-time signal processing and previous work onsignal recovery on graphs. To handle full-band graph signals, we propose agraph filter bank based on sampling theory on graphs. Finally, we apply theproposed sampling theory to semi-supervised classification on online blogs anddigit images, where we achieve similar or better performance with fewer labeledsamples compared to previous work.
展开▼
机译:我们针对有向图或无向图所支持的信号提出了一种采样理论。该理论遵循与经典抽样理论相同的范式。我们表明,对于图傅立叶变换下带宽受限的图信号,可以实现完美的恢复。采样的信号系数形成一个新的图形信号,其对应的图形结构保留了原始图形信号的一阶差分。对于一般图,提出了一种基于实验设计的采样的最优采样算子,以保证完美的恢复和对噪声的鲁棒性。对于图的傅立叶变换,以及对于Erd \ H {o} s-R \'enyi图,其傅立叶变换是具有最大鲁棒性的帧,随机采样可以极高的概率实现完美恢复。我们进一步建立了与有限离散时间信号处理的采样理论和图形上信号恢复的先前工作的联系。为了处理全波段图形信号,我们提出了一种基于图形采样理论的图形滤波器组。最后,我们将建议的抽样理论应用于在线博客和数字图像的半监督分类中,与以前的工作相比,我们用更少的标记样本获得了相似或更好的性能。
展开▼